
CPM Project

Improving the Code Release Process by
Pre-Defining Testing Instructions

Clifton L. Simmons, Jr.

South Carolina Department of Motor Vehicles

January 22, 2020

Improving the Code Release Process by Pre-Defining Testing Instructions Table of Contents

Page i of 48

Table of Contents
Table of Contents ... i
Table of Figures, Charts, and Tables .. ii

Problem Statement .. 1
Data Collection ... 2
Data Analysis .. 4
Implementation Plan ... 5

Action Steps needed to complete the goal (and who performs them) ... 5

Timeframes and cost ... 5
Potential obstacles and methods to overcome them .. 5
Potential resources ... 6
Communication with key stakeholders ... 6

Integration into standard operating procedure... 7
Evaluation Method .. 8

Summary and Recommendations ... 10
Appendix 1: Coding Methodologies ... 13

Waterfall Methodology ... 13

SCDMV Methodology .. 14
Appendix 2: Module Release Schedule ... 15

Appendix 3: Summary of Data .. 16
Appendix 4: Number of Failed Tickets .. 18
Appendix 5: Number of Failed Incidents.. 20

Appendix 6: Number of Tickets per Release .. 23
Appendix 7: Number of Tickets Failed More than Once ... 25

Appendix 8: Percent of Failed Tickets ... 27
Appendix 9: Percent of Failed Incidents ... 29

Appendix 10: Percent of Times Tickets Failed More Than Once .. 31
Appendix 11: Failed Tickets vs Failed Incidents ... 33

Appendix 12: Incidents vs. Tickets Compared to Tickets in a Release .. 34
Appendix 13: Survey ... 35

The questions ... 35

The responses .. 35
Question 1 .. 35

Question 2 .. 36
Summarization of Survey .. 38

Appendix 14: Causes of Failed Tickets ... 40
Assigned Grouping .. 40

MR-277 ... 40
MR-278 ... 41
MR-279 ... 41

MR-280 ... 42
Appendix 15: Notification Email ... 44

Email to all Developers and BAs .. 44
Endorsement from the Application Manager .. 44

Glossary .. 46

Improving the Code Release Process by Pre-Defining Testing Instructions Table of Figures, Charts,
and Tables

Page ii of 48

Table of Figures, Charts, and Tables
Table 1: Measure of Change .. 8
Table 2 – Module Releases with Dates ... 15

Table 3: Summary of Data all MRs ... 16
Table 4: Summary of Data MR-268 to MR-277 .. 17
Table 5: Summary of Data MR-278 to MR-280 .. 17
Table 6: Number of Failed Tickets through MR-277 ... 18
Table 7: Number of Failed Tickets through MR-280 .. 19

Table 8: Number of Failed Incidents through MR-277 ... 20
Table 9: Number of Failed Incidents through MR-280 ... 21
Table 10: Number of Tickets in Release through MR-277... 23
Table 11: Number of Tickets in Release through MR-280... 24

Table 12: Number of Tickets Failed More than Once through MR-277 25
Table 13: Number of Tickets Failed More than Once through MR-280 26

Table 14: Percentage of Failed Tickets through MR-277 .. 27
Table 15: Percentage of Failed Tickets through MR-280 .. 28
Table 16: Percent of Failed Incidents through MR-277 ... 29

Table 17: Percent of Failed Incidents through MR-280 ... 30
Table 18: Percent of Tickets that Failed More than Once through MR-277 31

Table 19: Percent of Tickets that Failed More than Once through MR-280 32
Table 20: Failed Tickets versus Failed Incidents through MR-280 .. 33
Table 21: Failed Incidents vs Failed Tickets Compared to Tickets in a Release through MR-280

... 34
Table 22 - Causes of Failed Tickets MR-277 ... 40

Table 23 - Causes of Failed Tickets MR-278 ... 41
Table 24 - Causes of Failed Tickets MR-279 ... 41

Table 25 - Causes of Failed Tickets MR-280 ... 42
Table 26 - Grouping Summary ... 43

file://///dmvphx/scdmv/users/Simmons_CliftonL/CPM/CPM%20Project.docx%23_Toc30573667

Improving the Code Release Process by Pre-Defining Testing Instructions Problem Statement

Page 1 of 48

Problem Statement

South Carolina Department of Motor Vehicles (SCDMV) follows a Software Development

Life Cycle (SCDLC) where when a software issue is encountered or an enhancement is defined, a

ticket is written by a Business Analyst (BA) then assigned to a Developer. The Developer writes

the code and has it promoted to the System Test1 area. The BA then defines the test plan based on

the business specifications and/or their experiences or relies on the Developer to define the

acceptance test. That acceptance test is then executed in the System Test area. The testing effort

may find errors that causes the code to be sent back to the Developer, and the cycle starts over.

Once the ticket passes System Test, it is moved to Regression2 and eventually Production. At any

point, the ticket could be sent back to the Developer for cause. The testing and regression efforts

are a predetermined length of time with no formal definition. This methodology is called Waterfall

in the Information Technology (IT) industry.3

The Configuration Management (CM) team of the Information Technology (IT)

Department at SCDMV is charged with getting onsite developed code into Production quickly and

accurately. If a defect is found after the code has been moved to Production, Developers, BAs,

and CM go into a heightened mode to get the issue resolved as quickly as possible. This effort can

and often does delay other releases and efforts. If SCDMV can reduce the number of errors found

in production, other efforts will be less impacted. Thereby, allowing this agency to better serve

the citizens of South Carolina.

1 See Glossary
2 Ibid.
3 See Appendix 1

Improving the Code Release Process by Pre-Defining Testing Instructions Data Collection

Page 2 of 48

Data Collection

Determining Where to Focus

Wanting to improve the SDLC, but having too many ideas on where to study, an

unscientific survey was sent to a group of fifty. Business Analysts, Developers, and Configuration

Management professionals were asked two questions.4 The questions were opened ended in an

effort to generate thought and to not lead them to a particular response.

An attempt was made to review the failures from MR-276. MR-276 was completed and

released prior to this project being started; therefore, the Developers and BAs may have not

remembered why the ticket had been failed. Of the 21 Failed Incidents (fifteen failed tickets),

responses were received for only four tickets. Three responses called for better testing tools (i.e.

Automated Testing) and one failed because the requirement was missed. The process of obtaining,

installing, training, and executing an Automated Testing system would take approximately two

years. Defining more detailed testing steps would be one of the steps needed when installing an

automated testing tool. Therefore, the basis of this project will focus on better defined testing.

The Focus

Code/tickets for SCDMV are promoted by Module Release (MR). Contents of each MR

are defined by the BAs with the assistance of the Developers and Managers in a review meeting.

The MR is then assigned to a release date based on the expected effort and other efforts within the

agency. Therefore, dates are not consistent (code is not released at specific times or intervals).

However, attempts are made to promote code to Production every six to eight weeks. The manager

4 See Appendix 13

Improving the Code Release Process by Pre-Defining Testing Instructions Data Collection

Page 3 of 48

of CM defines the release schedule at the beginning of the year; however, that schedule is often

adjusted due to other efforts or the effort of the release.

That being said, the data used for this project are broken down by releases and not time

periods. To give a better history or baseline of data, it was decided to gather data going back to

MR-268 which was the first release of 2018.5

Groups of data collected for the various baselines are listed alphabetically as follows6:

 Failed Tickets vs Failed Incidents

 Number of Tickets Failed More Than Once

 Number of Tickets per Release

 Number of Failed Incidents

 Number of Failed Tickets

 Percent of Failed Tickets

 Percent of Times Tickets Failed

 Percent of Times Tickets Failed More Than Once

It was determined that these data groups would allow us to see if changes made impacted

our outcome. While reviewing the data charts in Appendices 3 through 10, note that there are two

charts. The first chart shows the data prior to and including MR-277. The second chart shows the

data from MR-268 to MR-280. This was done to show the change in Mean and Sigmas.

5 See Appendix 2
6 See Appendices 3 – 10

Improving the Code Release Process by Pre-Defining Testing Instructions Data Analysis

Page 4 of 48

Data Analysis

Determining Where to Focus

Answers from the survey of fifty7 for the failed tickets ranged from no response received

to the “Developer did not promote the correct code.” Two responses that stood out were the

Developer “did not have tools (printer) to test” and “did not know enough about how to test.”

From the response chart in Appendix 13 titled Improvement Suggestion, we see that the Developer

and/or BA identified some form of testing to be the issue 25% of the time.

The Focus

The average number of failed incidents8 less the average number of failed tickets9 shows

that the difference between the two averages does not gets closer than 4.1 between MR-268 and

MR-277. The closest that the actual numbers get during the initial Data Analysis phase is two in

MR-274.

The number of Failed Incidents, ideally, should not be greater than the number of Failed

Tickets. The goal should always be no failed tickets; however, that is not a realistic expectation

in IT – at some point, you will have a failed ticket.

Beginning with MR-277 when a ticket was failed by the BA, the Developer and BA were

asked the following questions:

• Why was this ticket failed?

• Was there something missing in the write up?

• Was there a misunderstanding of the write up?

• Was it something else, if so what?

• Did the ticket work with the attached testing instructions? If no, did the developer

follow the test instructions prior to promoting the code?

7 See Appendix 13
8 See Appendix 3
9 Ibid.

Improving the Code Release Process by Pre-Defining Testing Instructions Implementation Plan

Page 5 of 48

Implementation Plan

Action Steps needed to complete the goal (and who performs them)

 The BA who writes the ticket will work with the assigned Developer to create an

acceptance test that will be added to the ticket. When the Developer is coding and has finished

coding, they will execute the test plan to determine if the ticket meets the predefined conditions of

the test. Likewise, the BA will execute the same test during System Test.

Timeframes and cost

 Since coding for MR-278 has already begun, a reduction in failures will be difficult to

determine. However, the action of adding predefined acceptance testing will begin with the tickets

in MR-278 that are promoted after July 3rd. MR-279 should truly begin to show if the theory

works.

 Real cost will be difficult to measure since the BAs and Developers each have different

rates of pay and actual time spent on the ticket is not tracked by this agency. The one measure that

can be used is amount of time taken to define the acceptance test. It is estimated that predefining

the acceptance test will add approximately thirty minutes per ticket.

The timeframe used will be from MR-278 to MR-280. If the theory proves correct, there

will be a reduction in the number of failed tickets and incidents.

Potential obstacles and methods to overcome them

 The only obstacle to overcome is “we never did it that way before” or “we tried, it did not

work.” Many employees predate the current management and are set in their ways. The only real

method to overcome this attitude is to have the theory prove correct. Some attitudes can be

mitigated by explaining that this is a test.

Improving the Code Release Process by Pre-Defining Testing Instructions Implementation Plan

Page 6 of 48

Potential resources

 No new or additional physical resources are needed. SCDMV currently has all resources

needed in place:

 Ticketing System – Microsoft System Center Service Manager (SCSM)

 Microsoft Office

 Developers

 BAs

Communication with key stakeholders

 The Applications Senior Manager and Ops Senior Manager were notified of the theory and

possible solution. Their input was also solicited. The Application Manager responded, “This is

what we’re going to test and what the test cases are so the developer has a clear target and has

testing scenarios he can use to validate his effort.”

 The Development Managers were notified one day before all the Business Analysts and

Developers were notified. One of those managers called it “more bureaucracy.”

 The next level of communication was to notify the BAs and Developers of the test.10 The

initial push back from one developer stated, “Personally, I think an acceptance plan will be helpful

in less than 10% of the situations, and I think it is going to cost more time than it is going to save.”

After explaining that approximately 42% of the failed tickets in MR-27711 could be traced back to

some form of testing effort, the Developer began to see the need for the study. A big endorsement

came from the Application Senior Manager. His response ended several concerns about the

perceived extra effort on behalf of the Developers.

10 See Appendix 15
11 See Appendix 14

Improving the Code Release Process by Pre-Defining Testing Instructions Implementation Plan

Page 7 of 48

Integration into standard operating procedure

Integration into the standard operating procedure is as simple as inserting the testing plan

onto the Documentation tab of SCSM. From there the developer will find the testing steps that

will be used to prove that the solution is working correctly. Tickets requiring Business

Specifications will have the acceptance test defined in the appropriate section within that

document. Once the Developer has completed their testing, a notation will be made in the ticket

indicating that the test was successful.

Improving the Code Release Process by Pre-Defining Testing Instructions Evaluation Method

Page 8 of 48

Evaluation Method

The data defined in the Data Collection section of this document will be represented in the

Control Charts. If the difference between the baseline (MR-268 through MR-277) analysis and

the failures in the rest of the experiment are less, the experiment is successful. The greater the

difference the more successful.

It is possible to see positive change above the mean; therefore, two measures were devined.

Ideally, the desire is for Positive Change while Positive Shift is acceptable. Change shown on the

Control Charts will be measured as follows:

Change Positive Change Negative Change

Minor
Less than the mean and greater than -1σ

Or a decrease of one to five failures

Greater than the mean and less than 1σ

Or an increase of one to five failures

Moderate
Less than the -1σ and greater than -2σ

Or a decrease of six to ten failures

Greater than the 1σ and less than 2σ

Or an increase of six to ten failures

Major
Less than the -2σ and greater than -3σ

Or a decrease of eleven or more failures

Greater than the 2σ and less than 3σ

Or an increase of eleven or more

failures
Table 1: Measure of Change

Each ticket failure will be followed with a request for information from the BA and

Developer. They will be asked the four questions defined in the Data Analysis section of this

document. Their answers will be placed into one of six groupings and represented with a Data

Points chart:

 Developer did not follow test plan – The Developer did not execute all or part of

the Test Plan that was defined.

 Developer Error – The developer did something that caused the ticket to fail. This

could be a promotion error or they inadvertently broke another section of code.

 Misunderstood ticket – Either the Developer or the BA misunderstood all or part of

the requirement.

 Did not Respond – Developers and most BAs do not work in the IT Department

and are not in the chain of command that would require an answer to the survey.

 Scope Creep – Someone, in most cases the BA, wants something added to the ticket

after the code has been promoted the first time.

Improving the Code Release Process by Pre-Defining Testing Instructions Evaluation Method

Page 9 of 48

 Test Plan not complete – The Test Plan did not contain enough steps or the correct

steps to ensure a successful test.

Improving the Code Release Process by Pre-Defining Testing Instructions Summary and
Recommendations

Page 10 of 48

Summary and Recommendations

Barry W. Boehm in his 1981 book Software Engineering Economics states that the earlier

a defect is found the cheaper it is to resolve. NASA confirmed this in its Error Cost Escalation

through the Project Life Cycle study that was conducted around 2003. In that study, NASA

determined that the “Cost Factor” was one to 1,615 times depending on when the defect was found

in the process and the method used to resolve.12 If we can find the errors in the development phase,

the amount of production down time is greatly reduced and improving the experience of the

Customer Service Representative (CSR) and the citizens of this great state.

It was realized toward the conclusion of this study that a major project at SCDMV had

overlapped the Implementation Plan of adding test plans to the newly opened tickets. The project

began with MR-274 and reached a milestone with MR-279. That project was the migration of the

COBOL systems from Micro Focus Net Express COBOL to Micro Focus Visual COBOL. During

that time period, dual maintenance/coding was taking place – Developers were updating both Net

Express and Visual COBOL systems at the same time. Likewise, the BAs were testing in two

systems. Coding in both systems ended with MR-279.

At that time, there was a decrease of four failed tickets between MR-279 and MR-280 (a

decrease of four failed incidents). There was an increase of ten failed tickets between MR-273

and MR-274 (the start of the Visual COBOL project). It is possible that the Visual COBOL project

contributed to some of the increase in failed tickets and incidents either by the amount of coding

that had to be done or by the difference in architecture.

12 NASA, Error Cost Escalation through the Project Life Cycle,

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100036670.pdf, (May 20, 2019).

Improving the Code Release Process by Pre-Defining Testing Instructions Summary and
Recommendations

Page 11 of 48

During the first four MRs (274, 275, 276, and 277) of the Visual COBOL project, the

number of failed tickets and incidents stayed fairly flat – within two tickets either way. When the

creation of test plans for each ticket began with MR-278, a decrease of failed tickets was realized.

The first MR (278) showed a decrease of failed tickets and incidents that was more than double

than each of the previous four MRs. This was the largest decrease in failed tickets since MR-270

when there was a reduction by seventeen failed tickets and eighteen failed incidents. The number

of failed tickets in MR-280 is the first time since MR-273 that there was a moderate positive

change13.

It was observed early in the study that the average of failed incidents less the average of

failed tickets between MR-268 and MR-277 was 4.1 points. After implementing the predefined

test plans that number was reduced to 2.67 points between MR-278 and MR-280.

One theory that has often been considered at SCDMV is the number of tickets assigned to

a release is directly related to the number of ticket failures. Appendix 12 shows mixed results.

MR-275 had a relatively low number of tickets in the release, but had a high number of failures.

MR-275 had the highest percentage for failed tickets at 34.09%14 and failed incidents at 43.18%.15

The percentage of failed tickets decreased by 4.56 points between MR-277 and MR-278, by 4.04

points between MR-278 and MR-279, and 7.87 points between MR-279 and MR-280. Likewise,

the percentage of failed incidents decreased by 2.08 points between MR-277 and MR-278, by 7.95

points between MR-278 and MR-279, and 8.5 points between MR-279 and MR-280.

Comparing MR-280 to releases prior to MR-273 exhibits minor to major positive change.

Reviewing releases MR-276 through MR-280, we see a steady decline in failures. Based on the

13 See Table 1: Measure of Change
14 See Appendix 8
15 See Appendix 9

Improving the Code Release Process by Pre-Defining Testing Instructions Summary and
Recommendations

Page 12 of 48

data above and in the appendices the implementation of test plans prior to updating code did make

a positive impact and decreased the number of failed tickets and failed incidents. However, the

conclusion of the Visual COBOL project could have added to that reduction. Without further

study, it cannot be determined which led to the greater reduction in failures. Was it the addition

of test plans or was reaching the milestone of eliminating dual maintenance?

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 1: Coding
Methodologies

Page 13 of 48

Appendix 1: Coding Methodologies

Waterfall Methodology

First introduced by Dr. Winston W. Royce in a paper published in 1970, the waterfall model is a

software development process. The waterfall model emphasizes that a logical progression of steps

be taken throughout the SDLC, much like the cascading steps down an incremental waterfall.16

The “waterfall model enforces moving to the next phase only after completion of the previous

phase.”17

16 “Waterfall Model: What Is It and When Should You Use It?,” https://airbrake.io/blog/sdlc/waterfall-model, (March

2019)
17 “What is Waterfall Model?,” Techopedia, http://www.techopedia.com/definition/14025/waterfall-model, (March

2019)

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 1: Coding
Methodologies

Page 14 of 48

SCDMV Methodology

SCDMV’s Waterfall Methodology flows as follows:

1. Problem, Enhancement, or Legislative Change is identified.

2. Ticket is written in the tracking system by a Business Analyst (BA).

3. The problem or enhancement is scheduled for release.

4. Coding

i) Problem

i. Assigned to a Developer to be resolved.

ii. Developer conducts development test.

ii) Enhancement or Legislative Change

i. Business Specifications are written and approved by the business area

responsible for the enhancement.

ii. Technical Specifications are written by the development staff.

iii. Technical supervisors/managers review the Technical Specifications and

approve or ask for revisions.

iv. Developer creates and/or updates the code for the enhancement.

v. Developer conducts development test.

5. Code is checked into a library management system after having been reviewed by a

technical supervisor/manager.

6. System Testing

i) Configuration Management (CM) moves the code to the testing area.

ii) BAs conduct System Testing.

7. Regression Testing

i) CM moves the code to the regression area.

ii) BAs conduct Regression Testing.

8. Production.

i) CM moves the code to Production.

ii) BAs conduct Install Verification Plan (IVP)

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 2: Module
Release Schedule

Page 15 of 48

Appendix 2: Module Release Schedule

Release 2018 Dates Release 2019 Dates Release 2020 Dates 18

MR-268 February 16 MR-274 February 5 MR-280 January 26

MR-269 April 24 MR-276 May 14 MR-281 March 8

MR-270 July 10 MR-277 August 6 MR-282 April 28

MR-271 September 4 MR-278 September 17 MR-283 June 16

MR-272 October 23 MR-279 November 5 MR-284 August 4

MR-273 December 4 MR-285 September 22

 MR-286 November 10

Table 2 – Module Releases with Dates

18 MR-282 through MR-286 are tentative dates

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 3: Summary
of Data

Page 16 of 48

Appendix 3: Summary of Data19

Release
Number

Failed

Tickets

Number

Failed

Incidents

Number

Tickets

in

Release

Number

Tickets

Failed

More

than

Once

Percent

Failed

Tickets

Percent

Failed

Incidents

Percent

Tickets

Failed

More

Than

Once

MR-268 12 14 61 2 19.67 22.95 3.28

MR-269 30 37 96 5 31.25 38.54 5.21

MR-270 13 19 82 4 15.85 23.17 4.88

MR-271 16 19 77 3 20.78 24.68 3.9

MR-272 11 15 41 2 26.83 36.59 4.88

MR-273 7 11 36 3 19.44 30.56 8.33

MR-274 17 19 67 1 25.37 28.36 1.49

MR-275 15 19 44 3 34.09 43.18 6.82

MR-276 15 21 65 2 23.08 32.31 3.08

MR-277 15 18 68 2 22.06 26.47 2.94

MR-278 11 15 58 3 18.97 25.86 5.17

MR-279 10 12 67 2 14.93 17.91 2.99

MR-280 4 5 74 1 5.41 6.76 1.35

Std Dev 5.96 7.02 17.64 1.04 7.08 8.91 1.89

Median 13 19 67 2 20.78 27.94 3.9

Average 13.77 17.54 65.15 2.62 21.6 27.8 4.26

Table 3: Summary of Data all MRs

19 Calculations are rounded to two decimal places.

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 3: Summary
of Data

Page 17 of 48

Release
Number

Failed

Tickets

Number

Failed

Incidents

Number

Tickets

in

Release

Number

Tickets

Failed

More

than

Once

Percent

Failed

Tickets

Percent

Failed

Incidents

Percent

Tickets

Failed

More

Than

Once

MR-268 12 14 61 2 19.67 22.95 3.28

MR-269 30 37 96 5 31.25 38.54 5.21

MR-270 13 19 82 4 15.85 23.17 4.88

MR-271 16 19 77 3 20.78 24.68 3.9

MR-272 11 15 41 2 26.83 36.59 4.88

MR-273 7 11 36 3 19.44 30.56 8.33

MR-274 17 19 67 1 25.37 28.36 1.49

MR-275 15 19 44 3 34.09 43.18 6.82

MR-276 15 21 65 2 23.08 32.31 3.08

MR-277 15 18 68 2 22.06 26.47 2.94

Std Dev 6 6.93 19.04 1.16 5.59 6.83 2.01

Median 15 19 66 2.5 23.31 29.46 4.39

Average 15.2 19.3 63.7 2.7 23.99 30.83 4.48

Table 4: Summary of Data MR-268 to MR-277

Release
Number

Failed

Tickets

Number

Failed

Incidents

Number

Tickets

in

Release

Number

Tickets

Failed

More

than

Once

Percent

Failed

Tickets

Percent

Failed

Incidents

Percent

Tickets

Failed

More

Than

Once

MR-278 11 15 58 3 18.97 25.86 5.17

MR-279 10 12 67 2 14.93 17.91 2.99

MR-280 4 5 74 1 5.41 6.76 1.35

Std Dev 2.65 3.51 13.75 0.58 6.06 8.23 1.48

Median 10 12 67 2 14.93 17.91 2.99

Average 9 11.67 70 2.33 13.65 17.73 3.5

Table 5: Summary of Data MR-278 to MR-280

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 4: Number of
Failed Tickets

Page 18 of 48

Appendix 4: Number of Failed Tickets

Table 6: Number of Failed Tickets through MR-277

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 4: Number of
Failed Tickets

Page 19 of 48

Table 7: Number of Failed Tickets through MR-280

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 5: Number of
Failed Incidents

Page 20 of 48

Appendix 5: Number of Failed Incidents

Table 8: Number of Failed Incidents through MR-277

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 5: Number of
Failed Incidents

Page 21 of 48

Table 9: Number of Failed Incidents through MR-280

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 5: Number of
Failed Incidents

Page 22 of 48

The blue shaded area in the previous chart (Table 7) represents the period of time where SCDMV

was maintaining two different COBOL systems. The yellow is the period of time where test plans

were required with the tickets. Green is the overlap between the two periods of time.

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 6: Number of
Tickets per Release

Page 23 of 48

Appendix 6: Number of Tickets per Release

Table 10: Number of Tickets in Release through MR-277

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 6: Number of
Tickets per Release

Page 24 of 48

Table 11: Number of Tickets in Release through MR-280

Improving the Code Release Process by Pre-Defining Testing Instructions
Appendix 7: Number of

Tickets Failed More than
Once

Page 25 of 48

Appendix 7: Number of Tickets Failed More than Once

Table 12: Number of Tickets Failed More than Once through MR-277

Improving the Code Release Process by Pre-Defining Testing Instructions
Appendix 7: Number of

Tickets Failed More than
Once

Page 26 of 48

Table 13: Number of Tickets Failed More than Once through MR-280

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 8: Percent of
Failed Tickets

Page 27 of 48

Appendix 8: Percent of Failed Tickets

The percentage is calculated by dividing the number of failed tickets by the number of tickets in

the release.

Table 14: Percentage of Failed Tickets through MR-277

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 8: Percent of
Failed Tickets

Page 28 of 48

Table 15: Percentage of Failed Tickets through MR-280

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 9: Percent of
Failed Incidents

Page 29 of 48

Appendix 9: Percent of Failed Incidents

The percentage is calculated by dividing the number of failed incidents by the number of tickets

in the release.

Table 16: Percent of Failed Incidents through MR-277

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 9: Percent of
Failed Incidents

Page 30 of 48

Table 17: Percent of Failed Incidents through MR-280

Improving the Code Release Process by Pre-Defining Testing Instructions
Appendix 10: Percent of

Times Tickets Failed
More Than Once

Page 31 of 48

Appendix 10: Percent of Times Tickets Failed More Than Once

The percentage is calculated by dividing the number of tickets that failed more than once by the

number of tickets in the release.

Table 18: Percent of Tickets that Failed More than Once through MR-277

Improving the Code Release Process by Pre-Defining Testing Instructions
Appendix 10: Percent of

Times Tickets Failed
More Than Once

Page 32 of 48

Table 19: Percent of Tickets that Failed More than Once through MR-280

Improving the Code Release Process by Pre-Defining Testing Instructions
Appendix 11: Failed

Tickets vs Failed
Incidents

Page 33 of 48

Appendix 11: Failed Tickets vs Failed Incidents

Table 20: Failed Tickets versus Failed Incidents through MR-280

Improving the Code Release Process by Pre-Defining Testing Instructions
Appendix 12: Incidents

vs. Tickets Compared to
Tickets in a Release

Page 34 of 48

Appendix 12: Incidents vs. Tickets Compared to Tickets in a Release

Table 21: Failed Incidents vs Failed Tickets Compared to Tickets in a Release through MR-280

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 13: Survey

Page 35 of 48

Appendix 13: Survey

Most surveys from my experience have a return of ten to twenty percent. This survey had a

return of 24%.

The questions

1. The software development, testing, and distribution process currently used is good

because…

2. The software development, testing, and distribution process can be improved by…

The responses

The responses have not been edited in any way. The number refers to the response in order it was

received. The responder’s name is listed only if permission was given by them to use their name.

Question 1

1. For the most part, it provides a fairly reliable way to track tickets through the development

process to production. The end result has been a basically good product in Phoenix.

2. Response

2.1. The end product we produce is very stable and dependable. This is the ultimate goal.

2.2. The current TFS process is the best the department has ever had. Very pleased with how

this is implemented.

3. No response given

4. No response given

5. Response

5.1. Software development process is enhanced by the requirement that specifications be

written for enhancements. These details along with a business process model where the

business analysts work hand in hand with the development staff to analyze the new or

revisions to the systems, design and implement the modifications or new development

make for a successful implementation.

5.2. Testing in two environments, TEST and PREP, give business analyst the opportunity to

test the fixes or enhancements for the code cycle focusing only on the changes to the

system. Prep testing allows overall testing to ensure that no are no unexpected

consequences to the fix or enhancement on the system. This is a sound method for testing.

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 13: Survey

Page 36 of 48

5.3. The distribution process has gone through many modifications based on technology

enhancements and sometimes personal preferences. The distribution system used

currently is good; however, we do have situations where unexpected code differences are

introduced. The volume of code moved and the variety of modifications needed for a code

move can contribute to code being overlooked. These situations are at a minimum.

6. It generally ensures that a stable product. In the long run, this saves the organization time and

money.

7. The process is good because it's sequential and straight forward. At the end of it, it seems like

applications have been well tested and are usually pretty stable after deployment.

8. Everything seems to be tracked and controlled well. We don’t seem to have multiple

developers working on the same programs at the same time as we used to.

9. It has made the testing better and speeded up the process when starting the testing.

10. William D. Neiswonger

10.1. We have defined separation of duties. Developers may help with the compilation

and testing of code, but the final decision to promote to production is not in the hands of

the person that developed the change.

10.2. Business analysts are used to help translate from business need to IT possibility.

Almost like being an interpreter… From English to Geek! This is definitely a learned

skill and our BAs are really doing a good job!

10.3. As much as we complain about Service Manager, the tool is giving DMV a well-

defined set of steps to follow. We have two main issues with this tool. One, we assume

the tool should be able to handle every possible combination of requirements (it can’t!).

Two, all involved are fighting against the tool instead of trying to use it as it has evolved.

Granted there are some things that the tool just does not do a good job with!

11. Anne Morgan

11.1. It allows programmers and business analysts to focus on what the priorities of the

tickets are.

12. It requires the involvement of the Business and IT. The business defines the requirements

before IT develops a solution. When a solution is ready, the business must test and approve

the results before the enhanced code can be move to Prep and ultimately production.

Question 2

1. A number of issues outside of our control has complicated the ability to adhere to our process,

shortened the time frames, and has added a good bit of complexity to Phoenix and its support

processes. However, someone I worked previously summed it up, “Results are King”.

2. Response

2.1. Allowing more tickets in a [Module Release] MR.

2.2. Allow a new ticket to be considered in next MR instead of 2 or 3 MRs ahead.

2.3. Testing should utilize the power of testing tools where possible.

2.4. Code moves to production should not result in any downtime for Member Services. Law

enforcement safety is at stake.

3. Automatic testing.

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 13: Survey

Page 37 of 48

4. Micro Focus unified functional automated testing.

5. Response

5.1. The processes can be improved by have clearer understanding of the components required

for a move and the specific environments affected by modifications.

5.2. For testing purposes, Business Analysts need to know when a program may impact areas

other than where a fix or enhancement is needed. Examples are customer, we all aware

that a customer change many impact any menu item in Phoenix, so testing of all customer

entry points are necessary. Other changes in code are not so obvious and if developers

could identify where the code change could impact other areas, it would assist in the

testing process.

5.3. Each environment should be described in details identifying the server, connection points

to the server, etc.

6. Implementing continuous integration, automated testing, pair programming and peer reviews

– all of which – help to ensure more maintainable, supportable, reliable and extensible software

systems.

7. It may or may not be possible, but I think the process could be improved by having all the

functionality we need in one system and eliminating the need to go back and forth between

Service Manager, TFS, Build Forms, etc.

8. Response

8.1. When a developer doesn’t complete a build form/process properly. It falls on the BA to

follow up with the developer to identify why the change hasn’t been processed for retest.

This often happens when the BA is waiting for a fix for a failed ticket.

8.2. Also, it would be nice to have dedicated testers from each processing area. Vehicle

Services is so short staffed that the processing areas cannot provide testing support during

regression testing phase. We need testers that are subject matter experts from their area

to fully test vehicle services.

9. I know there is always room for improvement but this process has come a long way and the

improvement now are great.

10. William D. Neiswonger

10.1. When a developer fails to meet the freeze date, moving code from one MR to the

next presents challenges that we have not come up with a process to aid us.

10.2. Developing code in multiple MRs at the same time is problematic because MR + 1

may not include code from MR. And it won’t include the code from the current MR until

it goes to production and is merged into main. Most of our coding effort happens in less

than 10% of our code base. The odds of having the same program in subsequent MRs is

almost guaranteed.

10.3. I know there must be a reasonable limit to the tickets that developers can code and

BAs can test. I don’t know if there is a way to assign tickets a point value for complexity

of coding and/or testing. We could process a bunch of low point tickets, where only a few

high point tickets should be included in a push. And we should also consider functional

area in the calculations.

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 13: Survey

Page 38 of 48

10.4. Need 2 person verification that code was compiled correctly and TFS merges were

completed properly. Person 1 does the work as designed by our current process. Person

2 is responsible for comparing TFS to the compile area, making sure the test area has the

latest compiled versions. Merges in TFS should also include a verification step. It is super

easy to forget a step or miss where something didn’t get copied because it was in use or

failed to compile successfully. Things happen!

11. Anne Morgan

11.1. Allowing BAs and programmers to determine what goes in each build. “This build

is frozen because we already have x number of tickets” doesn’t make sense. If a

programmer can code a fix, and a BA can test it, the ticket should be included.

11.2. With all the merging between builds, it is far too difficult to see the history of

changes for a program. It would be good to have a version that just lists the changes. That

is programmers check in comments only in a list with no indenting. Removing the

“merged by” comments in between would be very helpful.

11.3. Ensuring the merge process is complete and correct before a build goes to test.

11.4. Approving Technical Specifications in a more timely manner. They should be

approved within 24 hours. Once the Tech Spec is approved, the technical reviewer should

not require changes if the spec is adhered to.

11.5. Automating the process when PRs are moved from one MR to another. With the

purported merging ability of TFS, programmers should not have to repeat their work when

tickets change MRs. CM or TFS administrators should be able to use the TFS

functionality and move tickets from one MR to another when required without

intervention from the programmers. Especially when there are no other code changes on

top of the one being moved, which was the case here.

11.6. Always having two working branches in TFS. The branch that is current, plus the

next branch. When one MR goes into PROD, MR+2 branch should be opened.

12. The software development, testing, and distribution process can be improved by more planning

and communication. It appears that some programming enhancements are not delivered to the

business in time to perform through testing. When the business and IT decide what task will

be included in the next release, they should assign a business analyst, programmer and

programmer manager. It should be the responsibility of the programmer manger to provide a

status reports to show the task are assigned and are scheduled to be delivered in a timely

manner so testing can be completed

Summarization of Survey

Good (Listed alphabetically) Count

Business Analysts 1

Distribution 2

No Response 2

Reliable 5

Separation of Duties 2

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 13: Survey

Page 39 of 48

Specifications 1

Testing 2

TFS and Service Manager 2

Improvement Suggestion (Listed alphabetically) Count

Approving Technical Specifications in a timely manner 1

Combing Tools (Service Manager/BuildForms/TFS) 1

Complete buildform 1

Dedicated Testers 1

Document Environments/Servers 1

Increase number of tickets in a release 2

No downtime during code promotion 1

No suggestion 1

Planning/Assignment 2

Reduce Complexity 4

Testing (Automated) Tools 4

TFS Merge 1

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 14: Causes of
Failed Tickets

Page 40 of 48

Appendix 14: Causes of Failed Tickets

Assigned Grouping

Each response for a failed ticket was reviewed and placed into a grouping based on the response

from the Developer and BA.

1 = Developer did not follow test plan

2 = Developer Error

3 = Misunderstood ticket

4 = Did not Respond

5 = Scope Creep

6 = Test Plan not complete

MR-277

Ticket Response Grouping

RR289388 Found something else 5

RR313552 Developer misunderstood the requirements 3

RR313692 No response 4

RR314979 Did not understand existing design 3

RR316660 Programmer error 2

RR316683 Specs not clear 2

RR316751 Specs not clear 5

RR317030 Developer missed 3

RR317292 Developer did not promote 2

RR31910920 Developer did not have tools (printer) to test 1

RR319109 Developer test did not go far enough 1

RR320778 Code added to fix the stated problem inadvertently affected other

functionality.

5

RR321591 Developer did not know enough about how to test 1

RR32211721 Developer could not test 1

RR322117 No response 4

RR322117 Specs not clear 5

RR323716 Missed in coding 5

RR329532 Missed in coding 5
Table 22 - Causes of Failed Tickets MR-277

20 RR319109 was failed more than once; therefore, the same questions were asked each time it failed.
21 RR322117 ibid.

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 14: Causes of
Failed Tickets

Page 41 of 48

MR-278

Ticket Response Grouping

RR31539922 Test plan did not include all steps 6

RR315399 Developer did not follow test instructions 1

RR318839 Ticket impacted other areas that were not thought of 5

RR322936 Developer did not follow test instructions 1

RR32407023 Developer only coded in one area 2

RR324070 Business spec not complete 5

RR32465824 Scope creep 5

RR324658 Misunderstanding of the ticket 3

RR324658 Scope creep 5

RR325204 Ticket impacted other areas that were not thought of 5

RR326986 Developer did not follow test instructions 1

RR328547 Test plan did not include all steps 6

RR329284 Developer did not follow test instructions 1

RR330232 Exposed another error 5

RR331684 No response 4
Table 23 - Causes of Failed Tickets MR-278

MR-279

Ticket Response Grouping

RR323880 Scope creep 5

RR331246 Issue found while testing 5

RR331520 Scope creep 5

RR334066 Managerial. Ticket not completely tested 1

RR335802 Did not know all impacted parts 5

RR33623325 Developer did not follow test instructions 1

RR336233 Developer did not follow test instructions 1

RR336579 Original code not available 2

RR33747826 Large ticket. Lots of moving parts. 3

RR337478 Large ticket. Lots of moving parts. 3

RR337844 Scope creep 5
Table 24 - Causes of Failed Tickets MR-279

22 RR315399 was failed more than once; therefore, the same questions were asked each time it failed.
23 RR324070 ibid.
24 RR324658 ibid.
25 RR336233 ibid.
26 RR337478 ibid.

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 14: Causes of
Failed Tickets

Page 42 of 48

MR-280

Ticket Response Grouping

RR335841 Unexpected data 6

RR338643 made a “cut and paste” mistake 1

RR33885527 Per developer request: Please fail so I can get correct DB mod in 1

RR338855 Code could only be tested in PREP – RE: external connect via PREP to TEST 1

RR341048
Out results are successful when we test using the Uni Tool, but there is a
different result in the AAMVA tool

6

RR34234828
Small segment of ticket was not working. Fix was already submitted to
rectify problem.

1

RR342348 Developer did not test CDL in Dev 1

RR344563
Out results are successful when we test using the Uni Tool, but there is a
different result in the AAMVA tool

6

Table 25 - Causes of Failed Tickets MR-280

27 RR338855 was failed more than once; therefore, the same questions were asked each time it failed.
28 RR342348 ibid.

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 14: Causes of
Failed Tickets

Page 43 of 48

Table 26 - Grouping Summary

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 15:
Notification Email

Page 44 of 48

Appendix 15: Notification Email

Email to all Developers and BAs

As part of the CPM class, I have had to study a section of our processes to see where and

possibly how we can make improvements. Working with Robert and based on responses from BAs

and Developers when a failed ticket is initiated, I have zeroed in on the acceptance testing of

tickets (or lack thereof). Therefore, beginning with MR-278, any ticket that is not already in a

code submitted status will need to have an acceptance test plan attached.

The BA and Developer will collaborate on the plan prior to any coding taking place. That

test plan will be added to the Documentation tab of the RR. After the coding is completed and

before the Developer turns the ticket over to CM, the Developer will execute that plan. If the ticket

passes the plan, the Developers will indicate on the Documentation tab that the acceptance test

was executed and successful. After that CM will move the code to Test where the BA will execute

the plan along with any other testing that the BA deems necessary.

If a BA or CM finds that code has been submitted after July 3rd, 2019 without a defined

and executed acceptance test, they will return the ticket back to development.

This is a study to see if this makes a difference. Please let me know if you have any

questions.

Endorsement from the Application Manager

I am very much in favor of this concept. We will perform a post implementation analysis

after the next couple / three pushes to see how this effects our delivery quality.

Improving the Code Release Process by Pre-Defining Testing Instructions Appendix 15:
Notification Email

Page 45 of 48

I have been looking at the failed tickets as they have been reported and while this will not

catch every issue, it’s a start.

My experience has always been that the more “appropriate” testing that the programmer

can perform before turning the changes over to the BA the smoother the entire process works.

This takes a conscious effort to understand the ramifications of changes that are being

injected into our systems and requires significant collaboration between the analyst and the

technician. This may also involve having the BA sit with the Programmer as they are performing

their code testing.

There will be limitations to this concept. Obviously we don’t have the same level of data in

the Dev databases and sometimes setting up multiple conditions in that environment is not viable.

However this practice should not pose an undue burden on our development process. At least no

more than having a failed ticket due to lack of testing and putting it all the way back through the

development process. If we can avoid this extra work, the better off we’ll all be.

I would like to see if a side effect of this is the reduction of “fixes” to “problems” that have

been caused by changes injected in to our systems.

Improving the Code Release Process by Pre-Defining Testing Instructions Glossary

Page 46 of 48

Glossary

Word/Acronym/

Phrase
Definition

BA Business Analyst

CM Configuration Management

CSR Customer Service Representative

Failed Incident
Each time that a ticket is failed. A ticket can be failed multiple times

before it is resolved.

IT Information Technology

IVP Install Verification Plan

MR Module Release

Regression
Re-running functional and non-functional tests to ensure that

previously developed and tested software still performs after a change.

SCDMV South Carolina Department of Motor Vehicles

SCSM
Microsoft System Center Service Manager. The ticketing system used

by SCDMV.

SDLC Software Development Life Cycle

System Test

A level of testing that validates the complete and fully integrated

software product. The purpose of a system test is to evaluate the end-

to-end system specifications.

TFS
Microsoft Team Foundation Server. The library management system

used by SCDMV.

